2020 Spring 18.152 : Intro to PDEs
Final assignment

1. (10 points) Determine whether the following statements are true or false, and briefly verify your
answer.

(A) Suppose that a smooth function u : R x [0,7) — R satisfies u; = 2u,. Then, the solution u is
uniquely determined by its initial data u(x,0) € C*(R).

True. Since it is a linear transport equation, we have u(x,t) = ¢(x + 2¢) for a certain smooth ¢.
Hence, the initial data determine ¢ by ¢(x) = u(x,0).

(B) An entire smooth function u : R” x [0,T) — R satisfies the heat equation u;, = Au at all (x,7) €
R" x [0,T). Suppose that u(x,0) is compactly supported. Then, for each t > 0, u(x,t) is also
compactly supported.

False. For example, we consider an initial data g > 0 which is compactly supported. Then, we can

. n |X—A"\2 . I
observe that the solution u(x, ) = (4n1)~2 {g(y)e™ # dy is positive for x € R" and ¢ > 0.

(C) An entire smooth function u : R" x [0,7) — R satisfies the wave equation u, = Au at all
(x,1) € R" x [0, T). Suppose that u(x,0) is compactly supported. Then, for each t > 0, u(x, 1) is also
compactly supported.

False. u(x,t) = 1 is a counter-example.

(D) Let Q < R” be a bounded open set with smooth boundary 0Q. Suppose that u,v € C*(Q)
are Dirichlet Laplace eigenfunctions such that the set {u # v} has positive measure and [u/;2(q) #
V[ z2(qr)- Then, the following holds

f u(x)v(x)dx = 0. (1)
Q

False. Let Q = (0,7), u = sin6, v = 2sinf. Then, v — u = sinf and {sinf # 0} n Q = .

Remark. Even if we assume ||ul|2(q) = [[v|;2(q) = 1, the statement fails. For example, some eigen-
pairs (¢k, Ax) and (@g+1, Ak+1) can satisfy 4y = Axyq and {@k, ¢k+1) = 0. (c.f. Google Dirichlet
eigenfunctions on disk.) Then, u = ¢y and v = L(gok + @k+1) are a counterexample.
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(E) Suppose that Q — R” is a bounded open set with smooth boundary Q. Given f, g € C*(Q), the

elliptic equation Au + u = f has a smooth solution of class C* (5) satisfying the Dirichlet condition
u = gon o0Q.

False. Let Q = (0,7) R, g(x) = 0, and f(x) = sinx. Then, we have

Us
0<J smxzdx—J (sin x) (u" —i—u)dxzj —u cos x + usin x dx = 0.
0 0
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2. (20 points) Let o € (0,1) and a;;, bi,c, f € C“(E;) fori,j e {1,---,n}. Also, a;j(x) = aji(x)
.=+
holds in B, and

b, <A @)

Haij”Ca E+)’ B+)’ ||C1]HCU(E;—)

Moreover, there exists 1 > 0 such that A||¢]|> < a;;(x)&i&; holds for x € E; and ¢ € R". Then, show
that there exists some constant C = C(n, @, 4, A) such that

oty <€ (It + 1l oz ) - 3

Jul

holds for every u € C>@ (Ez ) satisfying f = a;ju;j + biju; + cu in E;.

Proof. We recall the result of the last problem of the problem set 4 that given a € (0, 1) there exists
C = C(n,a) such that

(D], 5 < [Bul, gz 4)

holds for u € C>*(R ) satisfying u(x’,0) = 0 for x' = R"~!,

Then, as the corollary in the video lecture 3, given a constant positive definite symmetric matrix a?j
satisfying |£[* < af f,fj A|&]? for £ € R”, there exists C = C(n, a, A, A) such that

[Dz“]a;ﬁ"+ < [a?j”ij]a;@" (5)
holds for u € CZ"(R ) satisfying u(x’,0) = 0 for x' = R*~ 1,

Now, by modifying the proof of Lemma 3 in the video lecture 3, we will prove the following.
Claim : a;j, b;, c € C*(B]) and u € C** (B} ) satisfies

f=Lu=ajjuj + bu; + cu (6)
and
aij = ajis Aé? < aijéié), (7
for some constant 1 > 0 in Q and u(x) = 0 on {x, = 0}. Let
oy 10 iy Wl iy < A ®)
Then, there exists some C = C(n,a, A, \) such that
”uHCZv”(BlJr) < C(HfHCa(Ej) + HMHCZ(E;F)) (9)

Proof of Claim. We recall y in the proof of Lemma 3. Given xo € R} = {(¥,0) : ' € R""!}
satisfying B; (xo) = {x 1 |x — xo| < 2p,{x — x0,e,) > O} < B, we define

v(x) = u(x)x([lx = xollp)- (10)
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Then, u = v in By (xg), v = 0 on R \ By, (x0) and R7, and v € Cz’“(@). Hence, for a?j = a;jj(xo) we
have (9). Next, by the identically same calculation of the proof of Lemma 3, we can obtain

(D%t oy < CUTeuze) + Il o)) (an
for some small enough p < %. Hence, we have
(D% 10y 09 < U lury + Nl o)) (12)
where
BI71(0) x (0,p) = {(+,x,) : |¥'] < 1,0 < x, < p}. (13)

On the other hand, the proof of Lemma 3 already implies that for small enough p < %p and x| € B;r
satisfying Bos(x1) — B, we have

2
[Dulacty o) < CUS gz + Il o) (14)
This completes the proof of the claim.

Finally, the boundary Schauder estimates (problem 2) is an immediate corollary of the claim and
the interpolation theorem. (c.f. the video lecture 3.) O
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3. (10 points) Let Q be a bounded open set in R"” having the uniform exterior sphere boundary con-
dition. Suppose that a;;, b;,c, f (i, ] € {1,---,n}) are bounded functions defined over Q satisfying
c(x) <0, |a;j(x)| < A, |bi(x)| < A in Q. Moreover, there exists A > 0 such that 2|€]> < a;;(x)&€;
holds for x € Q and ¢ € R". Then, show that there exists some constant C = C(n, €, A, A) such that

; 15)

sup u| < Csup|f
Q Q

holds for every u € D*(Q) n C%(Q) satisfying f = a;ju;; + bu; + cuin Q and u = 0 on Q.

Proof. We may assume Q c {0 < x; < L} for some large L by translating the coordinate system.
Next, given € > 0 we consider a barrier

We=M(1 —e ), (16)
where
a=2A/2, M = AA"2e"P (e + sup | f]) .

Then, we have we > u on 0Q. Toward a contradiction, we suppose that u < we fails. Then, there
exists an interior point x € Q such that u(xy) — we(xp) = supu — we = 0. We define

w(x) = we(x) + u(xo) — we(xo), a7n
which satisfies w > u and Xy = u(xp). Hence, at the interior maximum xy we have
O<aij(ﬂ/—u)ij+bi(ﬂ/—u)i. (18)

Since (we)i = Wi, (We)ij = Wjj, and cu < 0, at xo we have a contraction as follows.

f(x0) < aij(we)ij + bi(we)i = Me™ ™ (—a’ay; + aby)
< Me La(—aa+A) = —AA"1e ™ PM = —e —sup|f]. (19)

Hence,
u < AN"2e"P (e +sup |f]). (20)

holds for all x € Q and € > 0. Passing € to 0 yields the desired result.
O
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4. (10 points) Suppose that a smooth function u : R x [0, T) — R satisfies uy; — 2ty — thyry + 2y = 0
atall (x,7) € R x [0, T). Moreover, u(x,0) = g(x) = e, u;(x,0) = h(x) = x + 2¢*, and uy(x,0) =
k(x) = 4e* + 2 hold for all x € R. Find all possible solutions.

HINT: 07 — 2020, — 0,02 + 203 = (0, — 20x)(0r — 0x) (01 + Ox).
Proof. Let us define w = (0, — 20x)u = u; — 2u,. Then, w satisfies the wave equation
0= (0 — 0x)(0r + 0x)(0r — 20x)u = (0 — Ox)(Or + Ox)W = Wy — Wiy
In addition,
w(x,0) = u;(x,0) — 2u,(x,0) = h(x) — 2¢'(x) = x,
wi(x,0) = uy(x,0) — 2u(x,0) = k(x) — 2/ (x) = 0.

Hence, the d’ Alembert’s formula yields,
1 1 X+t 1
w(x, 1) = E[w(x +1,0) + w(x—1,0)] + 5,[ wy(s,0)ds = 5[(}6 +1)+ (x—1)] =x
x—t

Namely, u#, — 2u, = x. Since u(x,0) = g(x), the transport equation formula yields

t
u(x,r) = g(x +2t) + f x +2(t — 5)ds = exp(x + 21) + xt + 1.

0

In particular, it is the unique smooth solution. m|



5. Suppose that Q < R” is a bounded open set with smooth boundary Q. Let {(w;,4;)}*, <
Cy () x R be the sequence pairs of the Dirichlet Laplace eigenfunction and eigenvalue satisfying
Iwill 2y = 1,0 < A < i1, iETw Ai = 40, (Wi, wjdraiq) = 6ij» and {w;}? | spans L*(Q).

Suppose that a smooth function u € C* (ﬁ x [0, T)) satisfies the damped wave equation
Uy +up = Au—u
in Q x [0, 7) and the Dirichlet condition # = 0 on 0Q x [0, 7).
(A) (3 points) Show that the smooth function a;(7) = {u(x, 1), wi(x));2(q) satisfies
al +d. + (A + a; = 0. (*)
Proof. We can directly compute

al +d; = 0ulu,wipz + Ouluy wiypz = (g + ug, wip2

={Au—u,wiyp = J uywidx — (Vu, Vw;yr2 — (u,wiype = —(A; + 1a.
o0Q

O
(B) (2 points) The ODE theory implies that the solution g;() to (¥) must be
ai(t) = aje”? cos(uit) + Bie”? sin(u;r)

for some constants «;, 8; € R, where y; = 4/ A; + %.
Determine @; and B; in terms of g(x) = u(x,0), h(x) = u,(x,0), w;(x), and ;.
Proof. First,

a; = ai(0) = (g, wi)2.
Next,

(howiyz = ai(0) = —za; + Wi

namely,

Bi = h+ 8, Wiy @0



8

(C) (5 points) Show that [[u g1 (q) < C ¢ 3 for some constant C depending on g, 4 and their derivatives.

Proof. Itis enough to show >.°, (4; + 1)(a7 + B7) < C, because

o0 2
e ul 7, = Z (i cos(u;t) + Bisin(uit) ) w;
i=1 H!
) e @]
= > (A + 1) (i cos(uit) + fisin(uit))” < D (A + 1)(af + B2
i=1 i=1
We begin by observing

@wiym = Vg, Vwipz + (g wir = (4 + 1){g, w2 = (i + Dei.
Since g = 3.2, [will i <{g, wipsiwi, we have
0

a0
g2 = D Iwill e wig = D (41 + Def.
i=1 i=1

Next, we find f = h + %g, and repeat the previous process to f. Then,
0 3 o6}
£ = 2, + D7 < 5 DA + 1B

i=1 4 i=1

Hence
’ Hl2 < 2 415 4 Lo|2
ellulzy < lgly + 50k + 3805



6. Suppose that a smooth function u € C* (R” x [0, T)) satisfies the damped wave equation

Uy + Uy = Au—u

inR"” x [0,7).
(A) (10 points) Show that the following energy is non-increasing
1
E(t) = —J \Vul? + |u,|* + u’dx
2 B(R—t;x0)

where B(R — t;x9) = {x e R" : |[x — xo| < R—t},RE R, xp € R".
Proof. We denote B, = B(R — t; xp), and compute

1
E' :J VuVu; + uty + un; — —f \Vul? + |u)? + u?
By 2 08,

1
:J —(Au)uy + ugy + uny — 5 f —2uyuy + |Vu‘2 + ‘“1‘2 +u?
B,

t
1
2 2
<— | |wl”— 3 u- <0.
B, 08B,

O

(B) (5 points) Suppose that the initial data g(x) = u(x,0) and h(x) = u,(x, 0) are compactly supported.
Show that u(x, t) is also compactly supported for each ¢ > 0.

Proof. Let K be a compact set such that u(x,0) = u,(x,0) = 0if x ¢ K. Given a time T € (0, ), if
Bor(xo) n K = (J then the result in (a) implies u(x,7T) = u,(x,T) = 0in Br(xo). Hence, u(x,T) is
compactly supported. |
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(C) (bonus) (10 points) Suppose that the initial data g(x) = u(x,0) and h(x) = u,(x,0) are compactly
supported. We define the energy J(¢) by

1 1
J(t) = —f \Vul> + |u,|* + u’dx + —f uu; dx.
2 Jo 10 Jon
Show that J(7) > iOHuHHl &) and J' + 57 < 0. Verify ||u g ®) < Ce™ % for some constant C.
Proof. We can directly compute

1 1 1 9 7
J(t) — EH””?’{‘ &) = o fRn 4\Vul? + 5|uy|* + 4 + uu, dx = 0 JRH 4|Vu|* + i\u,\z + Euzdx >0
Next, we recall that u(x, 7) is compactly supported by 4(B). Hence, as like the computation in 4(A)

1d

30 \Vu|2 + |ue* + utdx = f VuVu; + uy + uudx

n

= J —(Au)u; + uuy + undx = — J |ut|2dx.

n

Now, let us denote € = % for simplicity. Then,
J = J —(1 — €)u? + euuy = f—(l — €)u? + eu(Au — u — u;)dx

= —J (1 — €)u? + €|Vul*> + ew® + eunsdx.

Therefore,
1
J +el = —EJ 2 —3e)u? + €|Vul|* + eu® + 2¢(1 — €)uudx
Rn
1
—J (1 —3€)u? + €|Vul* + eu* — €u*dx < 0.
2 Jen
Thus, we have
d, s
—(enJ(¢)) <0,
& (et
namely 10””“;11 <J < Ce T, mi
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7. Given a function g € C* ([0, 7]) with g(0) = g(x) = 0, we denote by X, = L*(Q) the set of
smooth uniformly bounded functions u(x,y) = u(rcos 6, r sin 6) satisfying
0 0 2
0= Au+2|x|%u = 0%u L _gglxl + —;t
r r
inQ = {(rcos@,rsinf) : 0 < < x,r > 1}  R?, and satisfying the boundary condition
(

u(cosf,sinf) = g(9) for 6¢€[0,n], u(r,0) =u(-r,0) =0 for r=1.

Given u € X, and m € N, we define a smooth function a,, € C*([1, 0)).
T
am(r) = 2ig 1 J u(rcos @, rsin 6) sin(m0)do.
0

We know that {2%71_% sin(m#)}%_, form an orthogonal basis of L*((0,7)). Thus,

1

11
u(rcos@,rsinf) =22z ZZ ) sin(mf).

(A) (2 points) Show that a,, satisfies |a,,| < C for some constant C and the following equation

al +r ', + 22— mPa, = 0. *)

Proof. Since u € L™, we have |u| < M for some constant M. Thus,

1

7T 7T
lam| <2277 J lu|| sin6]d0 < 22771 | Mdo < 3M
0 0

In addition,

1
al + —d, \/7J~ (trr + r~'u,) sin(m6)0 \/7J (ugp + 2u) sin(mo)0
-

= L r=2(—m?* + 2)usin(m0)d = (m* — 2)a,,.
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(B) (6 points) The ODE theory implies that the solutions to (¥ must be
ay(r) = a; cos(logr) + B sin(logr),
for some constants @1, € R. Moreover, for each k > 2
ar(r) = apr VB2 4 gr V2,

for some constants ay, 5 € R.

Determine a,,, B,;, except 5. What are the possible 8;?
Proof. Fork = 2,

T

a4 i — ap(0) = 2br f 2(0) sin(k0)d6 — 2373 (g, sin(k0)> 2.
0

We observe that ar~ V=2 € L® and recall the result in 5(A) that a,, € L*. They imply

BirV k-2 _ am(r) — agr—V k=2 o
Since r V¥ =2 diverges to o0, we have 8 = 0, and thus oy = 2%7rfé<g, sin(mé) ;2.

Next, in the same manner we can obtain

a; =a1(0) = 2%n_%<g, sin@);.

Here, we define up : Q — R by
ur = 2{g, sin 0)12(0,x) sin@cos(Inr) + 2 Z<g, sin(k6) )12 (o x) sin(k@)r™ k=2,
k=2
We observe that g” € C*197] e [2(0, 7) implies

0 0
lg" |2 = 2n7! Z<g", sin(m&))%2 = 27! Z m*(g, sin(m#) iz.

m=1 m=1
Hence,

| < 2[(g,sin@)| + 2 Z (g, sin(k));2|
k=2

1 1

. 2 2 _ 2

<zsup\g\+,%<Zk4|<g,sm<ke>>p|) <Zk 4) < 2suplg] + Clg"| 20
k=2 k=2

namely u; € X8 ce L”.
Now, we observe that v(rcos 6, rsin ) = 22772 sin @ sin(Inr) € L* satisfy v = 0 on 0Q. Hence,
for every 81 € R, up + 51v € X8. Namely, 51 can be any real number. O
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(C) (7 points) Let Xg < X, consist of the solutions u which converges to 0 as r — +00. What are the
possible sizes of the set Xg? Provide the conditions of g determining the size of Xg.

Proof. First of all, we recall that |a;(r)| < +/2/x§|u|dd — 0 as r — +co. Therefore, if (@1,51) #
(0,0) then X9 = (.

Suppose that @1 = 8; = 0. Then, by the result above,
. . _ 2__
u=2 2<g, sin(k6) )12 (o) sin(k)r k=2
k=2
Then, by using k — 1 < Vk? — 2, if r > 2 then we have

1 1

] < 2 3 [ sin(k8) 2 D) < %(Z e, sin<k9>>Lz|2) i ( v k) < Clelzonr.

k=2 k=2 k=2

namely if ; = 8; = Othenu e Xg which is uniquely determined. In conclusion, if S(z)” g(0) sin 6d6 =
0, then Xg consists of one element. If not, Xg is the empty set. m|
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8. Q is a smooth bounded open domain in R"”. We would like to solve the semi-linear elliptic equation

Au=u’ in Q,

for the Dirichlet condition u = g on 0Q, where g € C*(Q) and | g/~ = € is small.

(A) (3 points) Briefly verify that there exists a unique harmonic function v; € C*(Q) such that v; = g
on 0Q. Moreover, (by using the maximum principle) show that

sup |vi| < sup|g|.
Q oQ

Proof. By the Kellogg’s theorem, there exists a harmonic function v; € C>* (5) such that vi = g on
0Q. Since a harmonic function satisfies the mean value property, vi € C*(Q).

On the other hand, we have Djv; € C1*(Q) n C*(Q) and AD;v; = 0 in Q. Also, by the Kellogg’s
theorem, there exists a harmonic function v;; € CZ’“(E) such that vi; = D;v; on 0Q. Since there
exists a harmonic function of class C2(Q) n C°(Q) for each Dirichlet condition, we have Djy; =
vi; € C>*(Q) for each i = 1,---,n. Namely, v € C>*. We can iterate this process to show
V] € c® (5)

Finally, the maximum principle yields

infg < supv; <supg.
oQ Q oQ

(B) (7 points) Briefly verify that given v, f € C*(Q) the linear equation Aw — 3v?w = f has a unique
solution w € C™(Q) satisfying w = 0 on 0Q. Moreover, (by using the comparison principle and
barriers) show that

sup [w| < Msup [f],

Q Q

for some M depending on n, Q.

Proof. Since —3v? < 0, by the Schauder estimates and the method of continuity, there exists a unique
solution w € C>%(Q) to the uniformly elliptic linear equation Aw — 3v>w = f. Then, for any u €
C°(Q) we have

0= f ui(Aw — 3v*w — f)
Q
= J u(—Aw; + 3w + 6vviw + fi) = f Vu - Vw; + 3v?w; + (6vviw + filu =0 (22)
o Q
Next, we observe that w; € C1*(Q) and thus there exists a unique solution w; € C>%(Q) to Aw; —
3 = fi + 6vv;w such that w; = w; on 0Q. In addition,

J Vu-Vw; + 3v2uﬂ/i + (fi + 6vww)udx = 0, (23)

Q

holds for all u € C°(Q).



Subtracting (22) and (23) yields
J Vu - V(Wl' — Wi) + 3v2u(ﬂ/l~ — Wi) =0, (24)
Q

for any u € C(Q). Since W; — w; € H}(Q) and C is dense in H), there exists a sequence u; € C3°
such that limu; — Ww; — w; in H', and thus

J V(W 243w —wi* = 0. (25)

Namely, w; = w; € C2>%(Q) and thus w € C>*(Q). By iterating this process, we obtain w € C*(Q).

Next, the result of the problem 3 yields the desires upper bounds. m|

(C) (3 points) Let v, € C* (5) be the solution to Av, — 3v%v2 = f, = v? satisfying vo = 0 on 0Q.
Show that there exists small € such that

sup|v2| Msup|v1|3 < €.

Proof. If we choose € < then the results above directly implies |v,| < €. m|

IOM’

(D) (bonus) (4 points) For k > 3, we let viy; € C* (5) be the solution to

k 2 k—1 k 3 k
Aviyr — 3( > Vm) Virl = figl = 3( > Vm)‘}]% +v; = (Z Vm) — > Av,
1 m=1 m=1

satisfying vi11 = 0 on 0Q. Show that there exists small € such that

sup [vi1] < €
Q

Proof. We may choose € < 1 so that we have ]Zﬁfll V| < Zf{ 11 |vim| < 2e. Then, by induction we

have |fiy1| < 6€[vi|*+ || < 7€*F1. For € < 77, the result in 6(B) yields [vg41| < € < €71 O

(E) (3 points) Let uy, = Zk yvmand it = limy_, o uy € L®(Q). Show that

lim sup Auk—u‘—O
k—o0

Proof. By the result above, we have |u;| < 2€ and | — ;| < 26!

Hence,

by choosing small enough e.

S| < i — we @+ dug + 1}| < 100673,

Passing k — 00 yields the desired result. O

|l — Auy| = |
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9. Suppose that u : R" x [0, 4+00) is a smooth function such that u(x, ) = u(x + ¢;, ) holds for every
i € {l,---,n} and the following equation holds

Uil jUjj
=Au— ) ———. 26
= o ;Hyvu\z 20

(A) (5 points) Show that the following holds for ¢ > 0.

\Vu(x,7)|* < sup [Vu(x,0)|*. 27
xeR"
Proof. We define
i (x)uj(x)
() =6 — —— L 28
aij (%) = 8 1 + [Vu(x)]? 28
which satisfies
€7 = ayjxixg = [EP(1+ [Vu) ™! = 0, (29)
In addition, we have
Uy = a,'juij. (30)
We differentiate the equation by ai;k.
Ups = QjjUijk + u,-jékaij. 31

Hence,
2
ﬁ,Wu] = 2upuy = 2aijuijkuk + 2u,-juk8ka,-j
2 2
= a,-ja,j\Vu] - 2al~ju,-kujk + 2u,~juk6ka,~j < 0ij|Vu] + 2ul~juk0kaij. (32)

In addition,

st 2ttty + Qs Qg g0l Vul® + i Vul® | Qujundy|Val? (33)
KOk 1+ |Vul? (1+ |[Vul)? 1+ |Vul? (1+ |Vu]2)?
Hence,
| Vul* < 0;;|Vul* + b;é;|Vul?, (34)
where
b= 2u;u; 2UpgUpUglt; (35)

1+ |Vul2 (14 |Vu?)?
Therefore, the maximum principle and the periodicity imply the desired result.

(B) (5 points) Show that the following holds for ¢ >

—f A/ 1+ [Vu(x, 1)]2dx < (36)

where Q = (0,1)" < R".



Proof. By using periodicity, we calculate

df f Vu - Vu, f . Vu
— A/1+ [Vu(x, 1)|>dx = ——dx=—| u div| —— | dx. 37
dr Jo [Vulx 1) Q /1 + |Vul? Q V1 + |Vul?

In addition,

Vu div(Vu) Ly 1
\% = u- -
v/ 1+ |Vu? v/ 1+ |Vuf? v 1+ |Vul?
_ Au - Uit jUj - Uy _(38)
(1+|Vul?)2 (1 +|Vu>)2 (1 + |Vul?)2

if A1+ |Vu(x t)|2dx——f W geco (39)
dr Jo ’ a1+ Va2

Therefore,

Remark. ¢ /1 + |Vul? is the area of the graph of u over Q.
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10. (10 points) Let Q be a convex bounded open set in R" with smooth boundary. Suppose that
u € C*(Q x [0,400)) satisfies u; = Au in Q x [0,+00) and u = g on 0Q x [0, +00), where

g € C*(Q). Let w : Q — R be the harmonic function satisfying w = g on 0Q. Show that
lim sup |u(x,1) —w(x)| = 0. (40)
xeQ

t—+00

Proof. We consider v = u — w which is a solution to the heat equation with zero Dirichlet data. Then,
the energy E() = 5 {, v*(x,1)dx satisfies

E :J yvdx = —f |Vv|2dx < —CoE(t), (41)
for some constant Cy by the Poincargez’: inequality. Pglzence,
% (e“E(1)) <0, 42)
implies
E(f) < e 'E(0). (43)

On the other hand, we showed
, (44)

|Vv(x,1)| < K = sup|Vv(x,0)
Q

in class. To recall the proof, we may assume 0 € Q and —e; is the outward unit normal to JQ at 0.
Then, ¢(x) = Kx; is an upper barrier and thus v(x,#) < Kxj, and thus

hey,t) —v(0,t . hey, t .
n(0,0) = tim e ZvOD L vihent) Lk k. 45)
h—0+ h h—0+ h h—0+
In the same manner, we have v;(0,7) > —K. Since |Vv(0,7)| = |v,(0,7)] = [v1(0,7)|, we have
vy (0,7)] < K. Apply the same argument for all boundary point, we have
Vv < K, (46)

on 0Q. Then, ¢,|Vv|> < A|Vv|? and the maximum principle yield (@4).

Now, without loss of generality, given 7 we may assume v(xo,?) = sup |v(-, 7)|. Then, (@#4)) implies
v(x,1) = v(x0,1) — K|x — xo/, 47
where |x — x| < K~'v(xo, 1) = p. Thus,
1

E() > —J W (x, £)dx — |v2(x0,t)|J (1= plx|)2dx = Ch2(x0,)| = Csup (- )2 (48)
2 I, () B,(0)

Therefore,
sup [v(-,1)]> < C7le C"E(0) — 0. (49)
O



