
2020 Spring 18.152 : Intro to PDEs

Final assignment

1. (10 points) Determine whether the following statements are true or false, and briefly verify your
answer.

(A) Suppose that a smooth function u : R ˆ r0,T q Ñ R satisfies ut “ 2ux. Then, the solution u is
uniquely determined by its initial data upx, 0q P C8pRq.

True. Since it is a linear transport equation, we have upx, tq “ ϕpx ` 2tq for a certain smooth ϕ.
Hence, the initial data determine ϕ by ϕpxq “ upx, 0q.

(B) An entire smooth function u : Rn ˆ r0,T q Ñ R satisfies the heat equation ut “ ∆u at all px, tq P
Rn ˆ r0,T q. Suppose that upx, 0q is compactly supported. Then, for each t ą 0, upx, tq is also
compactly supported.

False. For example, we consider an initial data g ě 0 which is compactly supported. Then, we can

observe that the solution upx, tq “ p4πtq´
n
2
ş

gpyqe´
|x´y|2

4t dy is positive for x P Rn and t ą 0.

(C) An entire smooth function u : Rn ˆ r0,T q Ñ R satisfies the wave equation utt “ ∆u at all
px, tq P Rn ˆ r0,T q. Suppose that upx, 0q is compactly supported. Then, for each t ą 0, upx, tq is also
compactly supported.

False. upx, tq “ t is a counter-example.

(D) Let Ω Ă Rn be a bounded open set with smooth boundary BΩ. Suppose that u, v P C8pΩq
are Dirichlet Laplace eigenfunctions such that the set tu ‰ vu has positive measure and }u}L2pΩq ‰

}v}L2pΩq. Then, the following holds
ż

Ω

upxqvpxqdx “ 0. (1)

False. Let Ω “ p0, πq, u “ sin θ, v “ 2 sin θ. Then, v´ u “ sin θ and tsin θ ‰ 0u XΩ “ H.

Remark. Even if we assume }u}L2pΩq “ }v}L2pΩq “ 1, the statement fails. For example, some eigen-
pairs pϕk, λkq and pϕk`1, λk`1q can satisfy λk “ λk`1 and xϕk, ϕk`1y “ 0. (c.f. Google Dirichlet
eigenfunctions on disk.) Then, u “ ϕk and v “ 1?

2
pϕk ` ϕk`1q are a counterexample.
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(E) Suppose that Ω Ă Rn is a bounded open set with smooth boundary BΩ. Given f , g P C8pΩq, the
elliptic equation ∆u` u “ f has a smooth solution of class C8pΩq satisfying the Dirichlet condition
u “ g on BΩ.

False. Let Ω “ p0, πq Ă R, gpxq “ 0, and f pxq “ sin x. Then, we have

0 ă
ż π

0
psin xq2dx “

ż π

0
psin xqpu2 ` uqdx “

ż π

0
´u1 cos x` u sin x dx “ 0.
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2. (20 points) Let α P p0, 1q and ai j, bi, c, f P CαpB
`

2 q for i, j P t1, ¨ ¨ ¨ , nu. Also, ai jpxq “ a jipxq
holds in B

`

2 and
}ai j}CαpB

`

2 q
, }bi}CαpB

`

2 q
, }ci j}CαpB

`

2 q
ď Λ. (2)

Moreover, there exists λ ą 0 such that λ}ξ}2 ď ai jpxqξiξ j holds for x P B
`

2 and ξ P Rn. Then, show
that there exists some constant C “ Cpn, α, λ,Λq such that

}u}
C2,αpB

`

1 q
ď C

´

} f }
CαpB

`

2 q
` }u}

C0pB
`

2 q

¯

, (3)

holds for every u P C2,αpB
`

2 q satisfying f “ ai jui j ` biui ` cu in B
`

2 .

Proof. We recall the result of the last problem of the problem set 4 that given α P p0, 1q there exists
C “ Cpn, αq such that

rD2us
α;R

n
`
ď r∆us

α;R
n
`

(4)

holds for u P C2,αpR
n
`q satisfying upx1, 0q “ 0 for x1 “ Rn´1.

Then, as the corollary in the video lecture 3, given a constant positive definite symmetric matrix a0
i j

satisfying λ|ξ|2 ď a0
i jξiξ j ď Λ|ξ|

2 for ξ P Rn, there exists C “ Cpn, α, λ,Λq such that

rD2us
α;R

n
`
ď ra0

i jui jsα;R
n
`

(5)

holds for u P C2,αpR
n
`q satisfying upx1, 0q “ 0 for x1 “ Rn´1.

Now, by modifying the proof of Lemma 3 in the video lecture 3, we will prove the following.
Claim : ai j, bi, c P CαpB`2 q and u P C2,αpB`2 q satisfies

f “ Lu “ ai jui j ` biui ` cu (6)

and

ai j “ a ji, λ|ξ|2 ď ai jξiξ j, (7)

for some constant λ ą 0 in Ω and upxq “ 0 on txn “ 0u. Let

}ai j}CαpB`2 q
, }bi}CαpB`2 q

, }c}
CαpB`2 q

ď Λ. (8)

Then, there exists some C “ Cpn, α, λ,Λq such that

}u}C2,αpB`1 q
ď Cp} f }

CαpB
`

2 q
` }u}

C2pB
`

2 q
q. (9)

Proof of Claim. We recall χ in the proof of Lemma 3. Given x0 P R
n
0 “ tpx1, 0q : x1 P Rn´1u

satisfying B`2ρpx0q “ tx : }x´ x0} ă 2ρ, xx´ x0, eny ą 0u Ă B`2 , we define

vpxq “ upxqχp}x´ x0}ρq. (10)



4

Then, u “ v in B`ρ px0q, v “ 0 on Rn
`zB2ρpx0q and Rn

0, and v P C2,αpRn
`q. Hence, for a0

i j “ ai jpx0q we
have (5). Next, by the identically same calculation of the proof of Lemma 3, we can obtain

rD2usα;Bρpx0q` ď Cp} f }
CαpB

`

2 q
` }u}

C2pB
`

2
qq, (11)

for some small enough ρ ď 1
10 . Hence, we have

rD2usα;Bn´1
1 p0qˆp0,ρq ď Cp} f }

CαpB
`

2 q
` }u}

C2pB
`

2
qq, (12)

where
Bn´1

1 p0q ˆ p0, ρq “ tpx1, xnq : |x1| ă 1, 0 ă xn ă ρu. (13)

On the other hand, the proof of Lemma 3 already implies that for small enough ρ̃ ď 1
2ρ and x1 P B`2

satisfying B2ρ̃px1q Ă B`2 we have

rD2usα;Bρ̃px1q ď Cp} f }
CαpB

`

2 q
` }u}

C2pB
`

2
qq. (14)

This completes the proof of the claim.

Finally, the boundary Schauder estimates (problem 2) is an immediate corollary of the claim and
the interpolation theorem. (c.f. the video lecture 3.) �
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3. (10 points) Let Ω be a bounded open set in Rn having the uniform exterior sphere boundary con-
dition. Suppose that ai j, bi, c, f (i, j P t1, ¨ ¨ ¨ , nu) are bounded functions defined over Ω satisfying
cpxq ď 0, |ai jpxq| ď Λ, |bipxq| ď Λ in Ω. Moreover, there exists λ ą 0 such that λ}ξ}2 ď ai jpxqξiξ j
holds for x P Ω and ξ P Rn. Then, show that there exists some constant C “ Cpn,Ω, λ,Λq such that

sup
Ω

|u| ď C sup
Ω

| f |, (15)

holds for every u P D2pΩq XC0pΩq satisfying f “ ai jui j ` biui ` cu in Ω and u “ 0 on BΩ.

Proof. We may assume Ω Ă t0 ă x1 ă Lu for some large L by translating the coordinate system.
Next, given ε ą 0 we consider a barrier

wε “ Mp1´ e´αx1q, (16)

where

α “ 2Λ{λ, M “ λΛ´2eαD pε ` sup | f |q .

Then, we have wε ą u on BΩ. Toward a contradiction, we suppose that u ă wε fails. Then, there
exists an interior point x0 P Ω such that upx0q ´ wεpx0q “ sup u´ wε ě 0. We define

w̃pxq “ wεpxq ` upx0q ´ wεpx0q, (17)

which satisfies w̃ ě u and x̃0 “ upx0q. Hence, at the interior maximum x0 we have

0 ď ai jpw̃´ uqi j ` bipw̃´ uqi. (18)

Since pwεqi “ w̃i, pwεqi j “ w̃i j, and cu ď 0, at x0 we have a contraction as follows.

f px0q ď ai jpwεqi j ` bipwεqi “ Me´αx1p´α2a11 ` αb1q

ď Me´αLαp´αλ` Λq “ ´λΛ´1e´αDM “ ´ε ´ sup | f |. (19)

Hence,
u ă λΛ´2eαD pε ` sup | f |q . (20)

holds for all x P Ω and ε ą 0. Passing ε to 0 yields the desired result.
�
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4. (10 points) Suppose that a smooth function u : Rˆr0,T q Ñ R satisfies uttt´2uttx´utxx`2uxxx “ 0
at all px, tq P R ˆ r0,T q. Moreover, upx, 0q “ gpxq “ ex, utpx, 0q “ hpxq “ x ` 2ex, and uttpx, 0q “
kpxq “ 4ex ` 2 hold for all x P R. Find all possible solutions.

Hint: B3
t ´ 2B2

t Bx ´ BtB
2
x ` 2B3

x “ pBt ´ 2BxqpBt ´ BxqpBt ` Bxq.

Proof. Let us define w “ pBt ´ 2Bxqu “ ut ´ 2ux. Then, w satisfies the wave equation

0 “ pBt ´ BxqpBt ` BxqpBt ´ 2Bxqu “ pBt ´ BxqpBt ` Bxqw “ wtt ´ wxx.

In addition,

wpx, 0q “ utpx, 0q ´ 2uxpx, 0q “ hpxq ´ 2g1pxq “ x,

wtpx, 0q “ uttpx, 0q ´ 2utxpx, 0q “ kpxq ´ 2h1pxq “ 0.

Hence, the d’Alembert’s formula yields,

wpx, tq “
1
2

“

wpx` t, 0q ` wpx´ t, 0q
‰

`
1
2

ż x`t

x´t
wtps, 0qds “

1
2

“

px` tq ` px´ tq
‰

“ x.

Namely, ut ´ 2ux “ x. Since upx, 0q “ gpxq, the transport equation formula yields

upx, tq “ gpx` 2tq `
ż t

0
x` 2pt ´ sqds “ exppx` 2tq ` xt ` t2.

In particular, it is the unique smooth solution. �
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5. Suppose that Ω Ă Rn is a bounded open set with smooth boundary BΩ. Let tpwi, λiqu
8
i“1 Ă

C80 pΩq ˆ R be the sequence pairs of the Dirichlet Laplace eigenfunction and eigenvalue satisfying
}wi}L2pΩq “ 1, 0 ă λi ď λi`1, lim

iÑ`8
λi “ `8, xwi,w jyL2pΩq “ δi j, and twiu

8
i“1 spans L2pΩq.

Suppose that a smooth function u P C8
`

Ωˆ r0,T q
˘

satisfies the damped wave equation

utt ` ut “ ∆u´ u

in Ωˆ r0,T q and the Dirichlet condition u “ 0 on BΩˆ r0,T q.

(A) (3 points) Show that the smooth function aiptq “ xupx, tq,wipxqyL2pΩq satisfies

a2i ` a1i ` pλi ` 1qai “ 0. (*)

Proof. We can directly compute

a2i ` a1i “ Bttxu,wiyL2 ` Bttxu,wiyL2 “ xutt ` ut,wiyL2

“ x∆u´ u,wiyL2 “

ż

BΩ

uνwidx´ x∇u,∇wiyL2 ´ xu,wiyL2 “ ´pλi ` 1qai.

�

(B) (2 points) The ODE theory implies that the solution aiptq to (*) must be

aiptq “ αie´
t
2 cospµitq ` βie´

t
2 sinpµitq

for some constants αi, βi P R, where µi “

b

λi `
3
4 .

Determine αi and βi in terms of gpxq “ upx, 0q, hpxq “ utpx, 0q, wipxq, and µi.

Proof. First,
αi “ aip0q “ xg,wiyL2 .

Next,
xh,wiyL2 “ a1ip0q “ ´

1
2αi ` µiβi.

namely,
βi “ µ´1

i xh`
1
2 g,wiyL2 (21)

�
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(C) (5 points) Show that }u}H1pΩq ď Ce´
t
2 for some constant C depending on g, h and their derivatives.

Proof. It is enough to show
ř8

i“1pλi ` 1qpα2
i ` β2

i q ď C, because

et}u}2H1 “

›

›

›

›

8
ÿ

i“1

`

αi cospµitq ` βi sinpµitq
˘

wi

›

›

›

›

2

H1

“

8
ÿ

i“1

pλi ` 1q
`

αi cospµitq ` βi sinpµitq
˘2
ď

8
ÿ

i“1

pλi ` 1qpα2
i ` β2

i q.

We begin by observing

xg,wiyH1 “ x∇g,∇wiyL2 ` xg,wiyL2 “ pλi ` 1qxg,wiyL2 “ pλi ` 1qαi.

Since g “
ř8

i“1 }wi}
´2
H1 xg,wiyH1wi, we have

}g}2H1 “

8
ÿ

i“1

}wi}
´2
H1 xg,wiy

2
H1 “

8
ÿ

i“1

pλ1 ` 1qα2
i .

Next, we find f “ h` 1
2 g, and repeat the previous process to f . Then,

} f }2H1 “

8
ÿ

i“1

pλi ` 1qµ2
i β

2
i ď

3
4

8
ÿ

i“1

pλi ` 1qβ2
i .

Hence,
et}u}2H1 ď }g}2H1 `

4
3}h`

1
2 g}2H1 .

�
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6. Suppose that a smooth function u P C8
`

Rn ˆ r0,T q
˘

satisfies the damped wave equation

utt ` ut “ ∆u´ u

in Rn ˆ r0,T q.

(A) (10 points) Show that the following energy is non-increasing

Eptq “
1
2

ż

BpR´t;x0q

|∇u|2 ` |ut|
2 ` u2dx

where BpR´ t; x0q “ tx P Rn : |x´ x0| ď R´ tu, R P R, x0 P R
n.

Proof. We denote Bt “ BpR´ t; x0q, and compute

E1 “
ż

Bt

∇u∇ut ` ututt ` uut ´
1
2

ż

BBt

|∇u|2 ` |ut|
2 ` u2

“

ż

Bt

´p∆uqut ` ututt ` uut ´
1
2

ż

BBt

´2uνut ` |∇u|2 ` |ut|
2 ` u2

ď´

ż

Bt

|ut|
2 ´

1
2

ż

BBt

u2 ď 0.

�

(B) (5 points) Suppose that the initial data gpxq “ upx, 0q and hpxq “ utpx, 0q are compactly supported.
Show that upx, tq is also compactly supported for each t ě 0.

Proof. Let K be a compact set such that upx, 0q “ utpx, 0q “ 0 if x R K. Given a time T P p0,8q, if
B2T px0q X K “ H then the result in (a) implies upx,T q “ utpx,T q “ 0 in BT px0q. Hence, upx,T q is
compactly supported. �
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(C) (bonus) (10 points) Suppose that the initial data gpxq “ upx, 0q and hpxq “ utpx, 0q are compactly
supported. We define the energy Jptq by

Jptq “
1
2

ż

Rn
|∇u|2 ` |ut|

2 ` u2dx`
1
10

ż

Rn
uut dx.

Show that Jptq ě 1
10}u}

2
H1pRnq

and J1 ` 1
10 J ď 0. Verify }u}H1pRnq ď Ce´

t
20 for some constant C.

Proof. We can directly compute

Jptq ´
1
10
}u}2H1pRnq

“
1

10

ż

Rn
4|∇u|2 ` 5|ut|

2 ` 4u2 ` uut dx ě
1
10

ż

Rn
4|∇u|2 `

9
2
|ut|

2 `
7
2

u2dx ě 0.

Next, we recall that upx, tq is compactly supported by 4(B). Hence, as like the computation in 4(A)
1
2

d
dt

ż

Rn
|∇u|2 ` |ut|

2 ` u2dx “
ż

Rn
∇u∇ut ` ututt ` uutdx

“

ż

Rn
´p∆uqut ` ututt ` uutdx “ ´

ż

Rn
|ut|

2dx.

Now, let us denote ε “ 1
10 for simplicity. Then,

J1 “
ż

Rn
´p1´ εqu2

t ` εuutt “

ż

´p1´ εqu2
t ` εup∆u´ u´ utqdx

“ ´

ż

Rn
p1´ εqu2

t ` ε|∇u|2 ` εu2 ` εuutdx.

Therefore,

J1 ` εJ “ ´
1
2

ż

Rn
p2´ 3εqu2

t ` ε|∇u|2 ` εu2 ` 2εp1´ εquutdx

ď ´
1
2

ż

Rn
p1´ 3εqu2

t ` ε|∇u|2 ` εu2 ´ ε2u2dx ď 0.

Thus, we have
d
dt
pe

t
10 Jptqq ď 0,

namely 1
10}u}

2
H1 ď J ď Ce´

t
10 . �
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7. Given a function g P C8
`

r0, πs
˘

with gp0q “ gpπq “ 0, we denote by Xg Ă L8pΩq the set of
smooth uniformly bounded functions upx, yq “ upr cos θ, r sin θq satisfying

0 “ ∆u` 2|x|´2u “ B2
rru`

Bru
r
`
Bθθu
r2 `

2u
r2

in Ω “ tpr cos θ, r sin θq : 0 ď θ ď π, r ě 1u Ă R2, and satisfying the boundary condition

upcos θ, sin θq “ gpθq for θ P r0, πs, upr, 0q “ up´r, 0q “ 0 for r ě 1.

Given u P Xg and m P N, we define a smooth function am P C8
`

r1,8q
˘

.

amprq “ 2
1
2π´

1
2

ż π

0
upr cos θ, r sin θq sinpmθqdθ.

We know that t2
1
2π´

1
2 sinpmθqu8m“1 form an orthogonal basis of L2

`

p0, πq
˘

. Thus,

upr cos θ, r sin θq “ 2
1
2π´

1
2

8
ÿ

m“1

amprq sinpmθq.

(A) (2 points) Show that am satisfies |am| ď C for some constant C and the following equation

a2m ` r´1a1m ` r´2p2´ m2qam “ 0. (*)

Proof. Since u P L8, we have |u| ď M for some constant M. Thus,

|am| ď 2
1
2π´

1
2

ż π

0
|u|| sin θ|dθ ď 2

1
2π´

1
2

ż π

0
Mdθ ď 3M.

In addition,

a2m `
1
r

a1m “

c

2
π

ż π

0
purr ` r´1urq sinpmθqθ “ ´

c

2
π

ż π

0
r´2puθθ ` 2uq sinpmθqθ

“ ´r´2
ż π

0
r´2p´m2 ` 2qu sinpmθqθ “ pm2 ´ 2qam.

�



12

(B) (6 points) The ODE theory implies that the solutions to (*) must be

a1prq “ α1 cosplog rq ` β1 sinplog rq,

for some constants α1, β1 P R. Moreover, for each k ě 2

akprq “ αkr´
?

k2´2 ` βkr
?

k2´2.

for some constants αk, βk P R.

Determine αm, βm except β1. What are the possible β1?

Proof. For k ě 2,

αk ` βk “ akp0q “ 2
1
2π´

1
2

ż π

0
gpθq sinpkθqdθ “ 2

1
2π´

1
2 xg, sinpkθqyL2 .

We observe that αkr´
?

k2´2 P L8 and recall the result in 5(A) that am P L8. They imply

βkr
?

k2´2 “ amprq ´ αkr´
?

k2´2 P L8.

Since r
?

k2´2 diverges to8, we have βk “ 0, and thus αk “ 2
1
2π´

1
2 xg, sinpmθqyL2 .

Next, in the same manner we can obtain

α1 “ a1p0q “ 2
1
2π´

1
2 xg, sin θyL2 .

Here, we define u0 : ΩÑ R by

u1 “
2
πxg, sin θyL2p0,πq sin θ cospln rq ` 2

π

ÿ

kě2

xg, sinpkθqyL2p0,πq sinpkθqr´
?

k2´2.

We observe that g2 P C8r0,πs P L2p0, πq implies

}g2}L2 “ 2π´1
8
ÿ

m“1

xg2, sinpmθqy2L2 “ 2π´1
8
ÿ

m“1

m4xg, sinpmθqy2L2 .

Hence,

|u1| ď
2
π

ˇ

ˇxg, sin θyL2

ˇ

ˇ` 2
π

ÿ

kě2

ˇ

ˇxg, sinpkθqyL2

ˇ

ˇ

ď 2 sup |g| ` 2
π

ˆ

ÿ

kě2

k4
ˇ

ˇxg, sinpkθqyL2

ˇ

ˇ

2
˙

1
2
ˆ

ÿ

kě2

k´4
˙

1
2

ď 2 sup |g| `C}g2}L2p0,πq,

namely u1 P Xg ĂP L8.
Now, we observe that vpr cos θ, r sin θq “ 2

1
2π´

1
2 sin θ sinpln rq P L8 satisfy v “ 0 on BΩ. Hence,

for every β1 P R, u0 ` β1v P Xg. Namely, β1 can be any real number. �
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(C) (7 points) Let X0
g Ă Xg consist of the solutions u which converges to 0 as r Ñ `8. What are the

possible sizes of the set X0
g? Provide the conditions of g determining the size of X0

g .

Proof. First of all, we recall that |a1prq| ď
a

2{π
ş

|u|dθ Ñ 0 as r Ñ `8. Therefore, if pα1, β1q ‰

p0, 0q then X0
g “ H.

Suppose that α1 “ β1 “ 0. Then, by the result above,

u “ 2
π

ÿ

kě2

xg, sinpkθqyL2p0,πq sinpkθqr´
?

k2´2.

Then, by using k ´ 1 ď
?

k2 ´ 2, if r ě 2 then we have

|u| ď 2
π

ÿ

kě2

ˇ

ˇxg, sinpkθqyL2

ˇ

ˇr´pk´1q ď 2
π

ˆ

ÿ

kě2

ˇ

ˇxg, sinpkθqyL2

ˇ

ˇ

2
˙

1
2
ˆ

ÿ

kě2

r´2k`2
˙

1
2

ď C}g}L2p0,πqr
´1,

namely if α1 “ β1 “ 0 then u P X0
g which is uniquely determined. In conclusion, if

ş2π
0 gpθq sin θdθ “

0, then X0
g consists of one element. If not, X0

g is the empty set. �
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8. Ω is a smooth bounded open domain in Rn. We would like to solve the semi-linear elliptic equation

∆u “ u3 in Ω,

for the Dirichlet condition u “ g on BΩ, where g P C8pΩq and }g}L8 “ ε is small.

(A) (3 points) Briefly verify that there exists a unique harmonic function v1 P C8pΩq such that v1 “ g
on BΩ. Moreover, (by using the maximum principle) show that

sup
Ω

|v1| ď sup
BΩ

|g|.

Proof. By the Kellogg’s theorem, there exists a harmonic function v1 P C2,αpΩq such that v1 “ g on
BΩ. Since a harmonic function satisfies the mean value property, v1 P C8pΩq.

On the other hand, we have Div1 P C1,αpΩq XC8pΩq and ∆Div1 “ 0 in Ω. Also, by the Kellogg’s
theorem, there exists a harmonic function v1,i P C2,αpΩq such that v1,i “ Div1 on BΩ. Since there
exists a harmonic function of class C2pΩq X C0pΩq for each Dirichlet condition, we have Div1 “

v1,i P C2,αpΩq for each i “ 1, ¨ ¨ ¨ , n. Namely, v1 P C3,α. We can iterate this process to show
v1 P C8pΩq.

Finally, the maximum principle yields

inf
BΩ

g ď sup
Ω

v1 ď sup
BΩ

g.

�

(B) (7 points) Briefly verify that given v, f P C8pΩq the linear equation ∆w´ 3v2w “ f has a unique
solution w P C8pΩq satisfying w “ 0 on BΩ. Moreover, (by using the comparison principle and
barriers) show that

sup
Ω

|w| ď M sup
Ω

| f |,

for some M depending on n,Ω.

Proof. Since ´3v2 ď 0, by the Schauder estimates and the method of continuity, there exists a unique
solution w P C2,αpΩq to the uniformly elliptic linear equation ∆w ´ 3v2w “ f . Then, for any u P
C80 pΩq we have

0 “
ż

Ω

uip∆w´ 3v2w´ f q

“

ż

Ω

up´∆wi ` 3v2wi ` 6vviw` fiq “
ż

Ω

∇u ¨ ∇wi ` 3v2wi ` p6vviw` fiqu “ 0 (22)

Next, we observe that wi P C1,αpΩq and thus there exists a unique solution w̃i P C2,αpΩq to ∆w̃i ´

3v2w̃i “ fi ` 6vviw such that w̃i “ wi on BΩ. In addition,
ż

Ω

∇u ¨ ∇w̃i ` 3v2uw̃i ` p fi ` 6vviwqudx “ 0, (23)

holds for all u P C80 pΩq.
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Subtracting (22) and (23) yields
ż

Ω

∇u ¨ ∇pw̃i ´ wiq ` 3v2upw̃i ´ wiq “ 0, (24)

for any u P C80 pΩq. Since w̃i ´ wi P H1
0pΩq and C80 is dense in H1

0 , there exists a sequence ui P C80
such that lim ui Ñ w̃i ´ wi in H1, and thus

ż

Ω

|∇pw̃i ´ wiq|
2 ` 3v2|w̃i ´ wi|

2 “ 0. (25)

Namely, wi “ w̃i P C2,αpΩq and thus w P C3,αpΩq. By iterating this process, we obtain w P C8pΩq.

Next, the result of the problem 3 yields the desires upper bounds. �

(C) (3 points) Let v2 P C8pΩq be the solution to ∆v2 ´ 3v2
1v2 “ f2 “ v3

1 satisfying v2 “ 0 on BΩ.
Show that there exists small ε such that

sup
Ω

|v2| ď M sup
Ω

|v1|
3 ď ε2.

Proof. If we choose ε ď 1
10M , then the results above directly implies |v2| ď ε2. �

(D) (bonus) (4 points) For k ě 3, we let vk`1 P C8pΩq be the solution to

∆vk`1 ´ 3
´

k
ÿ

m“1

vm

¯2
vk`1 “ fk`1 “ 3

´

k´1
ÿ

m“1

vm

¯

v2
k ` v3

k “

´

k
ÿ

m“1

vm

¯3
´

k
ÿ

m“1

∆vm,

satisfying vk`1 “ 0 on BΩ. Show that there exists small ε such that

sup
Ω

|vk`1| ď εk`1.

Proof. We may choose ε ď 1
2 so that we have |

řk´1
m“1 vm| ď

řk´1
m“1 |vm| ď 2ε. Then, by induction we

have | fk`1| ď 6ε|vk|
2`|vk|

3 ď 7ε2k`1. For ε ď 1
10M , the result in 6(B) yields |vk`1| ď ε2k ď εk`1. �

(E) (3 points) Let uk “
řk

m“1 vm and ū “ limkÑ`8 uk P L8pΩq. Show that

lim
kÑ8

sup
Ω

ˇ

ˇ

ˇ
∆uk ´ ū3

ˇ

ˇ

ˇ
“ 0.

Proof. By the result above, we have |uk| ď 2ε and |ū ´ uk| ď 2εk`1 by choosing small enough ε.
Hence,

|ū3 ´ ∆uk| “ |ū3 ´ u3
k | ď |ū´ uk||ū2 ` ūuk ` u2

k | ď 100εk`3.

Passing k Ñ `8 yields the desired result. �
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9. Suppose that u : Rn ˆ r0,`8q is a smooth function such that upx, tq “ upx` ei, tq holds for every
i P t1, ¨ ¨ ¨ , nu and the following equation holds

ut “ ∆u´
ÿ

i, j

uiu jui j

1` |∇u|2
. (26)

(A) (5 points) Show that the following holds for t ě 0.

|∇upx, tq|2 ď sup
xPRn

|∇upx, 0q|2. (27)

Proof. We define

ai jpxq “ δi j ´
uipxqu jpxq

1` |∇upxq|2
, (28)

which satisfies
|ξ|2 ě ai jxix j ě |ξ|

2p1` |∇u|2q´1 ě 0. (29)
In addition, we have

ut “ ai jui j. (30)

We differentiate the equation by B
Bxk

.

ukt “ ai jui jk ` ui jBkai j. (31)

Hence,

Bt|∇u|2 “ 2ukukt “ 2ai jui jkuk ` 2ui jukBkai j

“ ai jBi j|∇u|2 ´ 2ai juiku jk ` 2ui jukBkai j ď Bi j|∇u|2 ` 2ui jukBkai j. (32)

In addition,

2ukBkai j “ ´
2uikuku j ` 2u jkukui

1` |∇u|2
`

4uiu jukuklul

p1` |∇u|2q2
“ ´

u jBi|∇u|2 ` uiB j|∇u|2

1` |∇u|2
`

2uiu julBl|∇u|2

p1` |∇u|2q2
. (33)

Hence,
Bt|∇u|2 ď Bi j|∇u|2 ` biBi|∇u|2, (34)

where

bi “ ´
2ui ju j

1` |∇u|2
`

2upqupuqui

p1` |∇u|2q2
. (35)

Therefore, the maximum principle and the periodicity imply the desired result.
�

(B) (5 points) Show that the following holds for t ě 0.
d
dt

ż

Ω

b

1` |∇upx, tq|2 dx ď 0, (36)

where Ω “ p0, 1qn Ă Rn.
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Proof. By using periodicity, we calculate

d
dt

ż

Ω

b

1` |∇upx, tq|2 dx “
ż

Ω

∇u ¨ ∇ut
a

1` |∇u|2
dx “ ´

ż

Ω

ut div

˜

∇u
a

1` |∇u|2

¸

dx. (37)

In addition,

div

˜

∇u
a

1` |∇u|2

¸

“
divp∇uq

a

1` |∇u|2
` ∇u ¨

˜

1
a

1` |∇u|2

¸

“
∆u

p1` |∇u|2q
1
2

´
uiu jui j

p1` |∇u|2q
3
2

“
ut

p1` |∇u|2q
1
2

. (38)

Therefore,
d
dt

ż

Ω

b

1` |∇upx, tq|2 dx “ ´
ż

Ω

u2
t

a

1` |∇u|2
dx ď 0 (39)

�

Remark.
ş

Ω

a

1` |∇u|2 is the area of the graph of u over Ω.
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10. (10 points) Let Ω be a convex bounded open set in Rn with smooth boundary. Suppose that
u P C8pΩ ˆ r0,`8qq satisfies ut “ ∆u in Ω ˆ r0,`8q and u “ g on BΩ ˆ r0,`8q, where
g P C8pΩq. Let w : ΩÑ R be the harmonic function satisfying w “ g on BΩ. Show that

lim
tÑ`8

sup
xPΩ
|upx, tq ´ wpxq| “ 0. (40)

Proof. We consider v “ u´w which is a solution to the heat equation with zero Dirichlet data. Then,
the energy Eptq “ 1

2

ş

Ω
v2px, tqdx satisfies

E1 “
ż

Ω

vtvdx “ ´
ż

Ω

|∇v|2dx ď ´C0Eptq, (41)

for some constant C0 by the Poincaré inequality. Hence,
d
dt

`

eC0tEptq
˘

ď 0, (42)

implies
Eptq ď e´C0tEp0q. (43)

On the other hand, we showed

|∇vpx, tq| ď K “ sup
Ω

|∇vpx, 0q|, (44)

in class. To recall the proof, we may assume 0 P Ω and ´e1 is the outward unit normal to BΩ at 0.
Then, φpxq “ Kx1 is an upper barrier and thus vpx, tq ď Kx1, and thus

v1p0, tq “ lim
hÑ0`

vphe1, tq ´ vp0, tq
h

“ lim
hÑ0`

vphe1, tq
h

ď lim
hÑ0`

K “ K. (45)

In the same manner, we have v1p0, tq ě ´K. Since |∇vp0, tq| “ |vνp0, tq| “ |v1p0, tq|, we have
|vνp0, tq| ď K. Apply the same argument for all boundary point, we have

|∇v| ď K, (46)

on BΩ. Then, Bt|∇v|2 ď ∆|∇v|2 and the maximum principle yield (44).

Now, without loss of generality, given t we may assume vpx0, tq “ sup |vp¨, tq|. Then, (44) implies

vpx, tq ě vpx0, tq ´ K|x´ x0|, (47)

where |x´ x| ď K´1vpx0, tq “ ρ. Thus,

Eptq ě
1
2

ż

Bρpx0q

v2px, tqdx “ |v2px0, tq|
ż

Bρp0q
p1´ ρ|x|q2dx “ C|v2px0, tq| “ C sup |vp¨, tq|2. (48)

Therefore,
sup |vp¨, tq|2 ď C´1e´C0tEp0q Ñ 0. (49)

�


